Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
The critical zone has been the subject of much discussion and debate as a term in the ecosystem, soil and earth system science communities, and there is a need to reconcile how this term is used within these disciplines. I suggest that much like watershed and soil ecosystems, the critical zone is an ecosystem and is defined by deeper spatial and temporal boundaries to study its structure and function. Critical zone science, however, expands the scope of ecosystem and soil science and more fully embraces the integration of earth sciences, ecology, and hydrology to understand key mechanisms driving critical zone functions in a place-based setting. This integration of multiple perspectives and expertise is imperative to make new discoveries at the interface of these disciplines. I offer solid examples highlighting how critical zone science as an integrative science contributes to ecosystem and soil sciences and exemplify this emerging field.more » « less
-
Geologic, geomorphic, and climatic factors have been hypothesized to influence where streams dry, but hydrologists struggle to explain the temporal drivers of drying. Few hydrologists have isolated the role that vegetation plays in controlling the timing and location of stream drying in headwater streams. We present a distributed, fine-scale water balance through the seasonal recession and onset of stream drying by combining spatiotemporal observations and modeling of flow presence/absence, evapotranspiration, and groundwater inputs. Surface flow presence/absence was collected at fine spatial (~80 m) and temporal (15-min) scales at 25 locations in a headwater stream in southwestern Idaho, USA. Evapotranspiration losses were modeled at the same locations using the Simultaneous Heat and Water (SHAW) model. Groundwater inputs were estimated at four of the locations using a mixing model approach. In addition, we compared high-frequency, fine-resolution riparian normalized vegetation difference index (NDVI) with stream flow status. We found that the stream wetted and dried on a daily basis before seasonally drying, and daily drying occurred when evapotranspiration outputs exceeded groundwater inputs, typically during the hours of peak evapotranspiration. Riparian NDVI decreased when the stream dried, with a ~2-week lag between stream drying and response. Stream diel drying cycles reflect the groundwater and evapotranspiration balance, and riparian NDVI may improve stream drying predictions for groundwater-supported headwater streams.more » « less
-
Abstract From hillslope to small catchment scales (< 50 km 2 ), soil carbon management and mitigation policies rely on estimates and projections of soil organic carbon (SOC) stocks. Here we apply a process-based modeling approach that parameterizes the MIcrobial-MIneral Carbon Stabilization (MIMICS) model with SOC measurements and remotely sensed environmental data from the Reynolds Creek Experimental Watershed in SW Idaho, USA. Calibrating model parameters reduced error between simulated and observed SOC stocks by 25%, relative to the initial parameter estimates and better captured local gradients in climate and productivity. The calibrated parameter ensemble was used to produce spatially continuous, high-resolution (10 m 2 ) estimates of stocks and associated uncertainties of litter, microbial biomass, particulate, and protected SOC pools across the complex landscape. Subsequent projections of SOC response to idealized environmental disturbances illustrate the spatial complexity of potential SOC vulnerabilities across the watershed. Parametric uncertainty generated physicochemically protected soil C stocks that varied by a mean factor of 4.4 × across individual locations in the watershed and a − 14.9 to + 20.4% range in potential SOC stock response to idealized disturbances, illustrating the need for additional measurements of soil carbon fractions and their turnover time to improve confidence in the MIMICS simulations of SOC dynamics.more » « less
-
null (Ed.)Numerous studies have examined bacterial communities in biological soil crusts (BSCs) associated with warm arid to semiarid ecosystems. Few, however, have examined bacterial communities in BSCs associated with cold steppe ecosystems, which often span a wide range of climate conditions and are sensitive to trends predicted by relevant climate models. Here, we utilized Illumina sequencing to examine BSC bacterial communities with respect to climatic gradients (elevation), land management practices (grazing vs. non-grazing), and shrub/intershrub patches in a cold sagebrush steppe ecosystem in southwestern Idaho, United States. Particular attention was paid to shifts in bacterial community structure and composition. BSC bacterial communities, including keystone N-fixing taxa, shifted dramatically with both elevation and shrub-canopy microclimates within elevational zones. BSC cover and BSC cyanobacteria abundance were much higher at lower elevation (warmer and drier) sites and in intershrub areas. Shrub-understory BSCs were significantly associated with several non-cyanobacteria diazotrophic genera, including Mesorhizobium and Allorhizobium - Neorhizobium - Pararhizobium - Rhizobium . High elevation (wetter and colder) sites had distinct, highly diverse, but low-cover BSC communities that were significantly indicated by non-cyanobacterial diazotrophic taxa including families in the order Rhizobiales and the family Frankiaceae. Abiotic soil characteristics, especially pH and ammonium, varied with both elevation and shrub/intershrub level, and were strongly associated with BSC community composition. Functional inference using the PICRUSt pipeline identified shifts in putative N-fixing taxa with respect to both the elevational gradient and the presence/absence of shrub canopy cover. These results add to current understanding of biocrust microbial ecology in cold steppe, serving as a baseline for future mechanistic research.more » « less
-
null (Ed.)Stream drying and wildfire are projected to increase with climate change in the western United States, and both are likely to impact stream chemistry patterns and processes. To investigate drying and wildfire effects on stream chemistry (carbon, nutrients, anions, cations, and isotopes), we examined seasonal drying in two intermittent streams in southwestern Idaho, one stream that was unburned and one that burned 8 months prior to our study period. During the seasonal recession following snowmelt, we hypothesized that spatiotemporal patterns of stream chemistry would change due to increased evaporation, groundwater dominance, and autochthonous carbon production. With increased nutrients and reduced canopy cover, we expected greater shifts in the burned stream. To capture spatial chemistry patterns, we sampled surface water for a suite of analytes along the length of each stream with a high spatial scope (50-m sampling along ~2,500 m). To capture temporal variation, we sampled each stream in April (higher flow), May, and June (lower flow) in 2016. Seasonal patterns and processes influencing stream chemistry were generally similar in both streams, but some were amplified in the burned stream. Mean dissolved inorganic carbon (DIC) concentrations increased with drying by 22% in the unburned and by 300% in the burned stream. In contrast, mean total nitrogen (TN) concentrations decreased in both streams, with a 16% TN decrease in the unburned stream and a 500% TN decrease (mostly nitrate) in the burned stream. Contrary to expectations, dissolved organic carbon (DOC) concentrations varied more in space than in time. In addition, we found the streams did not become more evaporative relative to the Local Meteoric Water Line (LMWL) and we found weak evidence for evapoconcentration with drying. However, consistent with our expectations, strontium-DIC ratios indicated stream water shifted toward groundwater-dominance, especially in the burned stream. Fluorescence and absorbance measurements showed considerable spatial variation in DOC sourcing each month in both streams, and mean values suggested a temporal shift from allochthonous toward autochthonous carbon sources in the burned stream. Our findings suggest that the effects of fire may magnify some chemistry patterns but not the biophysical controls that we tested with stream drying.more » « less
-
The critical zone (CZ), the dynamic living skin of the Earth, extends from the top of the vegetation canopy through the soil and down to fresh bedrock and the bottom of groundwater. All humans live in and depend on the critical zone. This zone has three co-evolving surfaces: the top of the vegetation canopy, the ground surface, and a deep subsurface below which Earth’s materials are unweathered. The US National Science Foundation supported network of nine critical zone observatories has made advances in three broad critical zone research areas. First, monitoring has revealed how natural and anthropogenic inputs at the vegetation canopy and ground surface cause subsurface responses in water, regolith structure, minerals, and biotic activity to considerable depths. This response in turn impacts above-ground biota and climate. Second, drilling and geophysical imaging now reveal how the deep subsurface of the CZ varies across landscapes, which in turn influences above-ground ecosystems. Third, several mechanistic models providing quantitative predictions of the spatial structure of the subsurface of the CZ have been proposed. Many countries now fund networks of critical zone observatories (CZOs) to measure the fluxes of solutes, water, energy, gas, and sediments in the CZ and some relate these observations to the histories of those fluxes recorded in landforms, biota, soils, sediments, and rocks. Each U.S. observatory has succeeded in synthesizing observations across disciplines; providing long-term measurements to compare across sites; testing and developing models; collecting and measuring baseline data for comparison to catastrophic events; stimulating new process-based hypotheses; catalyzing development of new techniques and instrumentation; informing the public about the CZ; mentoring students and teaching about emerging multi-disciplinary CZ science; and discovering new insights about the CZ. Many of these activities can only be accomplished with observatories. Here we review the CZO experiment in the US and identify how such a network could evolve in the future. Specifically, we recognize the need for the network to study network-level questions, expand the environments under investigation, accommodate both hypothesis testing and monitoring, and involve more stakeholders. We propose a hubs-and-campaigns model that promotes study of the CZ as one unit. Only with such integrative efforts will we learn to steward the life-sustaining critical zone now and into the future.more » « less
-
ABSTRACT While most bacterial and archaeal taxa living in surface soils remain undescribed, this problem is exacerbated in deeper soils, owing to the unique oligotrophic conditions found in the subsurface. Additionally, previous studies of soil microbiomes have focused almost exclusively on surface soils, even though the microbes living in deeper soils also play critical roles in a wide range of biogeochemical processes. We examined soils collected from 20 distinct profiles across the United States to characterize the bacterial and archaeal communities that live in subsurface soils and to determine whether there are consistent changes in soil microbial communities with depth across a wide range of soil and environmental conditions. We found that bacterial and archaeal diversity generally decreased with depth, as did the degree of similarity of microbial communities to those found in surface horizons. We observed five phyla that consistently increased in relative abundance with depth across our soil profiles: Chloroflexi , Nitrospirae , Euryarchaeota , and candidate phyla GAL15 and Dormibacteraeota (formerly AD3). Leveraging the unusually high abundance of Dormibacteraeota at depth, we assembled genomes representative of this candidate phylum and identified traits that are likely to be beneficial in low-nutrient environments, including the synthesis and storage of carbohydrates, the potential to use carbon monoxide (CO) as a supplemental energy source, and the ability to form spores. Together these attributes likely allow members of the candidate phylum Dormibacteraeota to flourish in deeper soils and provide insight into the survival and growth strategies employed by the microbes that thrive in oligotrophic soil environments. IMPORTANCE Soil profiles are rarely homogeneous. Resource availability and microbial abundances typically decrease with soil depth, but microbes found in deeper horizons are still important components of terrestrial ecosystems. By studying 20 soil profiles across the United States, we documented consistent changes in soil bacterial and archaeal communities with depth. Deeper soils harbored communities distinct from those of the more commonly studied surface horizons. Most notably, we found that the candidate phylum Dormibacteraeota (formerly AD3) was often dominant in subsurface soils, and we used genomes from uncultivated members of this group to identify why these taxa are able to thrive in such resource-limited environments. Simply digging deeper into soil can reveal a surprising number of novel microbes with unique adaptations to oligotrophic subsurface conditions.more » « less
An official website of the United States government
